OpenDelta
Release 0.3.2

THUNLP OpenDelta Team

Nov 21, 2022

GETTING STARTED

1 Essential Advantages: 3
Python Module Index 53

Index 55

OpenDelta, Release 0.3.2

OpenDelta is a Plug-and-play Library of the parameter-efficient fine-tuning (delta-tuning) technology for pre-trained
models.

GETTING STARTED 1

https://github.com/thunlp/OpenDelta/

OpenDelta, Release 0.3.2

2 GETTING STARTED

CHAPTER
ONE

ESSENTIAL ADVANTAGES:

* Clean: No need to edit the backbone PTM’s codes.
e Simple: Migrating from full-model tuning to delta-tuning needs as little as 3 lines of codes.
 Sustainable: Most evolution in external library doesn’t require a new OpenDelta.

» Extendable: Various PTMs can share the same delta-tuning codes.

Flexible: Able to apply delta-tuning to (almost) any position of the PTMs.

1.1 What is Delta-tuning and Why OpenDelta?

What is Delta?

As Pre-trained language models (PLMs) have become the fundamental infrastructure on many NLP tasks and bench-
marks, it is becoming increasingly clear from recent research that larger models tend to lead to better performance.
However, large-scale PLMs also bring prohibitive adaptation costs when fine-tuning all the parameters of a model and
retaining separate instances for different tasks.

Parameter-efficient model stimulation methods thus have attracted researchers’ eyes, which only tune a small fraction
of model parameter while achieving comparable or even better performance than full-model fine-tuning, dubbed as
“Delta-tuning”.

Delta thus means a small fraction A© of parameters besides the pretrained models ©y.
© ~ Og(frozen) + AO(tunable)

This open-source project implement several delta-tuning methods, which allows researchers and engineers to quickly
migrate their codes from full-model tuning to delta-tuning without replace the backend (the implementation of the
backbone PLM).

1.1.1 Why OpenDelta?

* Clean: No need to edit the backbone PTM’s codes.
» Simple: Migrating from full-model tuning to delta-tuning needs as little as 3 lines of codes.
 Sustainable: Most evolution in external library doesn’t require a new OpenDelta.

» Extendable: Various PTMs can share the same delta-tuning codes.

Flexible: Able to apply delta-tuning to (almost) any position of the PTMs.

OpenDelta, Release 0.3.2

1.1.2 Delta-tuning papers

1.2 Installation

The lasted version of OpenDelta is tested on on Python 3.8 and Pytorch 1.12. Other versions are likely to be supported
as well.

1.2.1 install the lastest version

pip install git+https://github.com/thunlp/OpenDelta.git

1.2.2 install the lastest pip version (more stable)

pip install opendelta

1.2.3 build from source

git clone git@github.com:thunlp/OpenDelta.git
cd OpenDelta

then

python setup.py install

or if you want to do some modifications on the code for your research:

python setup.py develop

1.3 Quick Start

Now we introduce the most basic interface to migrate your full-model tuning scripts to a delta tuning one on some
commonly used PTMs or their derivative models (the models that has the PTM as their submodule,e.g., BERT-
ForSequenceClassification). try in colab

from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("bert-large-cased™)

+ from opendelta import AdapterModel

+ delta_model = AdapterModel (model)

+ delta_model. freeze_module(exclude=["deltas", "classifier"]) # leave the delta tuning.,
—modules and the newly initialized classification head tunable.

+ # delta_model.log() # optional: to visualize how the “model” changes.

(continues on next page)

4 Chapter 1. Essential Advantages:

https://www.python.org/
https://pytorch.org/
https://colab.research.google.com/drive/1SB6W5B-2nKxOnkwHSIe3oGXZ7m53u_Vf?usp=sharing

OpenDelta, Release 0.3.2

(continued from previous page)

training_dataloader = get_dataloader()
optimizer, loss_function = get_optimizer_loss_function()
for batch in training_dataloader:
optimizer.zero_grad()
targets = batch.pop('labels")
outputs = model (**batch).logits
loss = loss_function(outputs, targets)
loss.backward()
optimizer.step()
print(loss)

- torch.save(model.state_dict(), "finetuned_bert.ckpt")
+ delta_model.save_finetuned("finetuned_bert")

We currently support the following models and their derivative models in their default configurations.
* BERT
* DeBERTa-v2
* GPT2
* OPT
* RoBERTa
* T5

For model not in the above list, please refer to more detailed custom usage.

1.4 Custom Usage

Now we introduce the pipeline to migrate your full-model tuning scripts to a delta tuning one, especial when your
model is not in the default configuration list, or you don’t want to use ghte default configuration.

1.4.1 STEP 1: Load the pretrained models

from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-base") #.
—»suppose we load BART

1.4.2 STEP 2: Add delta modules

We provide two alternatives to add the delta modules.

1.4. Custom Usage 5

OpenDelta, Release 0.3.2

2.1 Visualize the backbone structure

Delta tuning’s core change in the structure of the base model is to decorate (modify) the modules of the base model
with small delta modules. We assume we want to treat the feedforward layer of each block as our targer modules.
Since different PLM name the submodules differently, We should first know the name of the feedforward layer in

Nl
N

the BART model by visualization. = For more about visualization, see Visualization.

from bigmodelvis import Visualization
Visualization(model) .structure_graph()

root
— model
— shared weight: [
— encoder
— embed_tokens
— embed_positions weight:[1026,
— layers

— self_attn

— fci
— fc2
— layernorm_embedding
— decoder
— embed_tokens
— embed_positions weight:[1026,
— layers

— weight:

fcl
— fc2
— layernorm_embedding
— classification_head
— dense \
— out_proj

We can see from the structure graph that the feed forward layer in Bart is called model.encoder.layers.$.fcl and
model.encoder.layers. $.fc2, where $ represent a number from 0-5. Since we want to apply adapter after all the
feed forward layers, we specify the modified_modules=["'£fc2'], which is the common suffix for feed forward layers.

S

= For details about the name based addressing, see Name-based submodule addressing

Other configurations, such as the bottleneck_dim in Adapter, can be passed as key word arguments.

from opendelta import AdapterlModel

delta_model = AdapterModel (backbone_model=model, modified_modules=['fc2'], bottleneck_
—dim=12)

delta_model.log() # This will visualize the backbone after modification and other.
—information.

Try different positions

OpenDelta provide the flexibility to add delta to various positions on the backbone model. For example, If you want to
move the adapter in the above example after the layer norm of the feed forward layer. The code should be changed into

delta_model = AdapterModel (backbone_model=model, modified_modules=['final_layer_norm'],.
—bottleneck_dim=12)

The performance may vary due to positional differences, but there is currently theorectical guarantee that one will
outperform the other.

6 Chapter 1. Essential Advantages:

OpenDelta, Release 0.3.2

Favored Configurations

Feel confused about the flexibility that OpenDelta brings? The default configuration is the
default_modified_modules attributes of each Delta model. Generally, the default configurations are already good
enough. If you want squeeze the size of delta models further, you can refer to the following papers.

* AdapterDrop: On the Efficiency of Adapters in Transformers

 Sparse Structure Search for Parameter-Efficient Tuning(Delta Tuning)

1.4.3 STEP 3: Freeze parameters

So far the backbone model is still fully tunable. To freeze the main part of the backbone model except the trainable
parts (usually the delta paramters), use freeze_module method. The syntax of exclude field also obeys the name-based
addressing rules.

delta_model.freeze_module(exclude=["deltas", "layernorm_embedding"])
delta_model.log()

root
— model
— shared
— encoder
— embed_tokens
— embed_positions
— layers

— self_attn

— fc1
— fc2
— adapter
“— modulelist
— down_proj
— up_proj
— layernorm_embedding weight: [
— decoder
— embed_tokens
— embed_positions
— layers

— fc1
— fc2
— adapter
“— modulelist
— down_proj
— up_proj
— layernorm_embedding
'— classification_head
— dense
— out_proj
Trainable Ratio: @.166578%

Usually, we want to only save the trainable part, then we should modify the state_dict of the backbone model which
original contains all the parameters. Now with set_state_dict=True, the model.state_dict () only contains the
trainable parameters.

delta_model. freeze_module(exclude=["deltas", "layernorm_embedding"], set_state_dict=True)

1.4. Custom Usage 7

https://arxiv.org/abs/2010.11918
https://arxiv.org/abs/2206.07382

OpenDelta, Release 0.3.2

1.4.4 STEP 4: Normal training pipeline

The model then can be trained in traditional training scripts. Two things should be noticed:

Note

1. No need to change the optimizer, since the optimizer will only calculated and store gradient for those pa-
rameters with requires_grad=True, and the requires_grad attribute has been changed during the call to
freeze_module method.

2. model.eval() or model.train() should be used if we need to enable/disable dropout. Opendelta doesn’t
touch those configuration.

1.4.5 STEP 5: Save and load the Delta Model

Option1: Use opendelta interface.

One option is to use our provided interface. This will save both the configurations of the delta model and the parameters
of all trainable parameters.

delta_model.save_finetuned("some_local_path/")

When loading the delta_model, just call the from_finetuned methods. Note that the loaded model is fully trainable.
If you want to continue to train it, please use freeze_module again.

from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-base")
from opendelta import AutoDeltalModel

delta_model = AutoDeltaModel.from_finetuned("some_local_path/", backbone_model=model)

Option2: Use pytorch interface.

Another option is to load the model using traditional pytorch ways.

torch.save(model .state_dict(), "some_local_path/pytorch_model.bin")

Then load it into an initialied backbone model with delta model. Remember to use strict=False since now the
state_dict contains only the trainable parameters.

from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-base")

from opendelta import AdapterModel

delta_model = AdapterModel (backbone_model=model, modified_modules=['fc2'], bottleneck_
—dim=12)

model .load_state_dict(torch.load("some_local_path/pytorch_model.bin"), strict=False)

8 Chapter 1. Essential Advantages:

OpenDelta, Release 0.3.2

Option3: Save and upload to DeltaCenter.

You can also save the delta model to delta center to share with the community. See instructions.

1.5 AutoDelta Mechanism

Inspired by Huggingface transformers AutoClasses , we provide an AutoDelta features for the users to
1. Easily to experiment with different delta models

2. Fast deploy from configuration file, especially from the repos in DeltaCenter.

1.5.1 Easily load from dict, so that subject to change the type of delta models.

from opendelta import AutoDeltaConfig, AutoDeltaModel
from transformers import T5ForConditionalGeneration

backbone_model = T5ForConditionalGeneration.from_pretrained("t5-base")

We can load a config from a dict

config dict = {
"delta_type":"lora",
"modified_modules":[
"SelfAttention.q",
"SelfAttention.v",
"SelfAttention.o"
1,
"lora_r":4}
delta_config = AutoDeltaConfig.from_dict(config_dict)

Then use the config to add a delta model to the backbone model

delta_model = AutoDeltaModel.from_config(delta_config, backbone_model=backbone_model)

now visualize the modified backbone_model
from bigmodelvis import Visualization
Visualizaiton(backbone_model) .structure_graph()

1.5.2 Fast deploy from a finetuned delta checkpoints from DeltaCenter

use tranformers as usual.

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

t5 = AutoModelForSeq2SeqLM. from_pretrained("t5-large")

t5_tokenizer = AutoTokenizer.from_pretrained("t5-large")

A running example

inputs_ids = t5_tokenizer.encode("Is Harry Poter wrtten by JKrowling", return_tensors="pt
t5_tokenizer.decode(t5.generate(inputs_ids) [0])

>>> '<pad><extra_id_0>7? Is it Harry Potter?</s>'

1.5. AutoDelta Mechanism 9

https://huggingface.co/docs/transformers/v4.16.2/en/model_doc/auto#transformers.AutoModel
https://examplelink

OpenDelta, Release 0.3.2

root
— encoder
— embed_tokens

— final_layer_norm
— decoder
— embed_tokens
— block
— @
— layer
— @

— final_layer_norm

weight:[32128, 768]

weight:[32128, 768]

SelfAttention

— weight:[768, 768]
— k weight:[768, 768]

— relative_attention_bias
layer_norm weight: [768]

DenseReluDense
— wi

— wo
layer_norm

weight:[3072, 768]
weight:[768, 3072]
weight: [768]

SelfAttention

4
layer_norm

weight:[768, 768]
weight:[768, 768]
weight:[768]

DenseReluDense
— wi

— wo
layer_norm

weight:[3072, 768]

weight:[768, 3872]
weight:[768]

weight:[768]

weight:[32128, 768]

SelfAttention

— weight:[768, 768]
— k weight:[768, 768]

— relative_attention_bias
layer_norm weight: [768]

EncDecAttention

layer_norm

weight:[768, 768]
weight: [768]

DenseReluDense
— wi

— wo
layer_norm

weight:[3072, 768]
weight:[768, 3872]
weight: [768]

SelfAttention

— k
layer_norm

weight:[768, 768]
weight:[768, 768]
weight:[768]

EncDecAttention

layer_norm

weight:[768, 768]
weight:[768]

DenseReluDense
— wi

— wo
layer_norm

weight:[3072, 768]

weight:[768, 3072]
weight:[768]

weight:[768]

weight:[32, 12]

weight:[32, 12]

Chapter 1.

Essential Advantages:

OpenDelta, Release 0.3.2

Load delta model from delta center:

use existing delta models

from opendelta import AutoDeltaModel, AutoDeltaConfig

use existing delta models from DeltaCenter

delta = AutoDeltaModel. from_finetuned("thunlp/Spelling_Correction_T5_LRAdapter_demo",.
—backbone_model=t5)

freeze the whole backbone model except the delta models.

delta. freeze_module()

visualize the change

delta.log()

t5_tokenizer.decode(t5.generate(inputs_ids) [0])
>>> <pad> Is Harry Potter written by JK Rowling?</s>

Hash check

Since the delta model only works together with the backbone model. we will automatically check whether you load the
delta model the same way it is trained.

We calculate the trained model’s md5 and save it to the config. When finishing loading the delta model, we will
re-calculate the mdS5 to see whether it changes.

1.6 DeltaCenter

1.6.1 Share to Delta Center.

delta_model.save_finetuned("test_delta_model™, push_to_dc = True)

1.6.2 Download from Delta Center.

use tranformers as usual.

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

t5 = AutoModelForSeq2SeqlLM. from_pretrained("t5-large")

t5_tokenizer = AutoTokenizer.from_ pretrained("t5-large")

A running example

inputs_ids = t5_tokenizer.encode("'Is Harry Poter wrtten by JKrowling", return_tensors="pt
t5_tokenizer.decode(t5.generate(inputs_ids) [0])

>>> '<pad><extra_id_0>? Is it Harry Potter?</s>'

Load delta model from delta center:

use existing delta models

from opendelta import AutoDeltaModel, AutoDeltaConfig

use existing delta models from DeltaCenter

delta = AutoDeltaModel. from_finetuned("thunlp/Spelling_Correction_T5_LRAdapter_demo",.
—.backbone_model=t5)

freeze the whole backbone model except the delta models.

(continues on next page)

1.6. DeltaCenter 11

http://some_link

OpenDelta, Release 0.3.2

(continued from previous page)

delta.freeze_module()
visualize the change
delta.log()

t5_tokenizer.decode(t5.generate(inputs_ids) [0])
>>> <pad> Is Harry Potter written by JK Rowling?</s>

1.7 Composition of delta models

With OpenDelta, you can perform compostion of different delta models.

1.7.1 Add different deltas to the backbone

from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained("roberta-base')

from opendelta import LoraModel, AdapterModel

delta_model = LoraModel (backbone_model=model, modified_modules=['key'], lora_r=1)
delta_model2 = AdapterModel (backbone_model=model, modified_modules=["output'],.
—bottleneck_dim=12)

delta_model.log()

root
— roberta
— embeddings
— word_embeddings
— position_embeddings
— token_type_embeddings
— LayerNorm weight:[76
— encoder
— layer
— attention
— self

— key weight:
— output
— dense weight:
— LayerNorm
— adapter

— modulelist
— down_proj
— up_proj
— intermediate
— dense weight: [3072
— output
— dense weight:
— LayerNorm
— adapter
— modulelist
— down_proj
— up_proj
— classifier
— dense
— out_proj \
Trainable Ratio: 100.000000%
Delta Parameter Ratio: ©.383228%

12 Chapter 1. Essential Advantages:

OpenDelta, Release 0.3.2

1.7.2 Even add multiple delta to the same layer

from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-base")
from opendelta import AdapterModel, LowRankAdapterModel
delta_model = AdapterModel (backbone_model=model, modified_modules=['fc2'])

delta_model2 = AdapterModel (backbone_model=model, modified _modules=['fc2'], bottleneck_

delta_model3 = LowRankAdapterModel (backbone_model-model, modified_modules=['fc2'],.
—reduction_factor=12)

delta_model.log()

root
— model
— shared
— encoder
— embed_tokens
— embed_positions
— layers

self_attn

fcl
fc2
— adapter
L— modulelist
— down_proj
— up_proj
— adapter_1
L— modulelist
|— down_proj
— up_proj
— low_rank_adapter
— down_sampler
— up_sampler

— layernorm_embedding

“— decoder

— embed_tokens

— embed_positions

— layers

feil
fc2
— adapter
— modulelist
— down_proj
— up_proj
— adapter_1
L— modulelist
— down_proj
— up_proj
— low_rank_adapter
— down_sampler
“— up_sampler

— layernorm_embedding
— classification_head

— dense
— out_proj
Trainable Ratio: 100

.000000%

Delta Parameter Ratio: @.506210%

weight:[1026,

weight:

weight:[50265, 768

weight:[1026,

7681

Order of Insertion

When adding to the same layer, please pay attention to the order of adding delta. As the above example, adapter
is added after the fc2, the tensor will first go through adapter then go through adapter_1, at last compacter. If the
delta is added before the backbone layer, then the last added delta will be the first to go through.

1.7. Composition of delta models

13

OpenDelta, Release 0.3.2

Also, pay attention to the detaching order. The delta that is first added should be the last to be detached.

1.8 Multitask Modeling using OpenDelta

Multitask Serving with Delta-tuning

A huge advange of Delta-tuning is that it can be used for multitask serving. Imagine we have a pretrained model trained
on a mix of data coming from multiple languages, e.g.,English, Chinese, and French. Now you want to have seperate
models that specialise in Chinese, French, English. We can thus delta-tune three deltas on each language with small
amount of additional language-specific data. During serving, when a Chinese sentence comes, you attach the “Chinese
Delta”, and next a French sentence comes, you detach the “Chinese Delta”, and attach a “French Delta”.

Here is how to achieve multitask serving using OpenDelta.

from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-base")
from opendelta import LoraModel

delta_model = LoraModel (backbone_model=model, modified_modules=['fc2'])
delta_model.log()

root
— model
— shared
— encoder
— embed_tokens weight:[50
— embed_positions
— layers
— self_attn

— fcil !
— fc2 wei
“— layernorm_embedding
“— decoder
— embed_tokens
— embed_positions
— layers

— weight:

— fci1
— fe2
— layernorm_embedding
— classification_head
— dense [
— out_proj W
Trainable Ratio: 100.0200000
Delta Parameter Ratio: @.262598%

Now we detach the deltas from the backbone

delta_model.detach()
delta_model.log()

We can reattach the deltas to the backbone

delta_model.attach()
delta_model.log()

14 Chapter 1. Essential Advantages:

OpenDelta, Release 0.3.2

root
— model
— shared weight:
— encoder
— embed_tokens 1t 1 [50265,
— embed_positions weight:[1026,
— layers
— self_attn

— fc1
— fc2
— layernorm_embedding
~— decoder
— embed_tokens
— embed_positions
— layers

weight:
fcl
— fc2
—— layernorm_embedding
'— classification_head
— dense
— out_proj :
Trainable Ratio: 100.000000%
Delta Parameter Ratio: ©@.000000%

root
— model
— shared veight: [50265
— encoder
— embed_tokens weight:[50265,
— embed_positions
— layers

— self_attn

weight:

— fc1
L— fc2 v
— layernorm_embedding
~— decoder
— embed_tokens
— embed_positions
— layers

weight:[7
fcl
— fc2
— layernorm_embedding
— classification_head
— dense [
— out_proj i
Trainable Ratio: 100.000000%
Delta Parameter Ratio: ©.262598%

1.8. Multitask Modeling using OpenDelta 15

OpenDelta, Release 0.3.2

Independence of Different Delta Models

Different delta models will be independent in detaching and attaching. (But the visualization will not show all deltas
in the backbone model.)

continue from the above example

from opendelta import AdapterModel

delta_model2 = AdapterModel (backbone_model=model, modified modules=["fcl'])
delta_model2.log()

root
— model
— shared veight: [50265,
— encoder
— embed_tokens weight:[:
— embed_positions weight:[1026,
— layers
— self_attn
— weight:[7

— fci1 weight:[:
— adapter
— modulelist

— fe2
‘— layernorm_embedding
“— decoder

— embed_tokens 5, 768
— embed_positions weight: [102€
— layers

— fc1 weight: [:
— adapter
L— modulelist
— down_proj
— up_proj
— fc2 weight:[7
— layernorm_embedding
— classification_head
— dense \
— out_proj \
Trainable Ratio: 100.000000
Delta Parameter Ratio: 1.529844%

detach the lora delta

delta_model.detach() # detach the lora delta
delta_model.log()

16 Chapter 1. Essential Advantages:

root
— model
— shared
— encoder
— embed_tokens
— embed_positions
— layers

— self_attn
— fc1
— adapter

weight:[50265, 768]

weight:[50265, 768]

weight:[3872, 768] bias

“— modulelist
— down_proj
— up_proj

— fc2
— layernorm_embedding
— decoder
— embed_tokens
— embed_positions
— layers

— fci
— adapter

weight:[768, 3072] bias
weight:[768]

:[307

1 [768
bias

weight:[58265, 768]

weight:[3072, 768] bias

L— modulelist
— down_proj

— u

— fc2
— layernorm_embedding
— classification_head
— dense
— out_proj
Trainable Ratio: 100.000000%
Delta Parameter Ratio:

weight:[768,
weight:[3, 768] bias:[3]

1.273886%

_proj

weight:[768, 3072] bias
weight:[768]

768] bias:[768]

detach the adapter delta and reattach the lora delta

1 [307

1[768
bias

OpenDelta, Release 0.3.2

weight:[1026, 768]

weight:[768, 768] bias:[768]
weight:[768] bias:[768]
2]

]
1 [768]

weight:[1826, 768]

weight:[768, 768] bias:[768]
weight:[768] bias:[768]
2]

]
1 [768]

delta_model2.detach() # detach the adapter delta
delta_model.attach() # reattach the lora delta

delta_model.log()

root
— model
— shared
— encoder
— embed_tokens
— embed_positions
— layers

— self_attn

fc1
fc2

— layernorm_embedding
— decoder

— embed_tokens

— embed_positions

— layers

fci1
fc2
— layernorm_embedding

-— classification_head

— dense

— out_proj
Trainable Ratio: 100.000000%
Delta Parameter Ratio: 0.262598%

weight:[50265, 768]

weight:[58265, 768]

weight:[3072, 768] bias
weight:[768, 3872] bias
weight:[768]

weight:[50265, 768]

weight:[3072, 768] bias
weight:[768, 3072] bias
weight:[768]

weight:[768, 768] bias:[768]
weight:

[3, 768] bias:[3]

1.8. Multitask Modeling using OpenDelta

weight:[1026, 768]

weight:[768, 768] bias:[768]
weight:[768] bias:[768]

1[3072]

:[768]
bias:

[768]

weight:[1026, 768]

weight:[768, 768] bias:[768]
weight:[768] bias:[768]

1 [3072]

1 [768]
bias:

[768]

OpenDelta, Release 0.3.2

BitFit not supported

Q
o=

“— 1 Currently detach is not suitable for BitFit, which modify the requires_grad property. Please wait for future releases.

1.9 OpenDelta + BMTrain

* BMTrain is an efficient large model training toolkit that can be used to train large models with tens of billions of
parameters. It can train models in a distributed manner while keeping the code as simple as stand-alone training.

e ModelCenter implements pre-trained language models (PLMs) based on the backend OpenBMB/BMTrain.
ModelCenter supports Efficient, Low-Resource, Extendable model usage and distributed training.

Now we have the LoraModel, AdapterModel, CompacterModel, ParallelAdapterModel, LowRankAdapterModel fully
supported the distributed training with BMTrain and ModelCenter.

Pass backend="bmt ' in config or delta model initialization to enable bmtrain.

1.10 OpenDelta + Huggingface Accelerate

1.11 Examples

1.11.1 examples_prompt

Lora| Bias- Adapter- | Adapter- | Adap- Adapater Com- | Prefix Prompt
Tun- Houstbly | Preffier ter- Low-Rank pactor | Tuning | Tuning
ing Drop

TS
GPT-2

BART

Distil-
BERT
RoBERTa

BERT
T5-
3b(parallel])
Deberta-
v2
CTRL

18 Chapter 1. Essential Advantages:

https://github.com/OpenBMB/BMTrain
https://github.com/OpenBMB/ModelCenter

OpenDelta, Release 0.3.2

1.11.2 tutorials

1.12 Visualize the Parameters

When OpenDelta makes modifications to a pretrained model (PTM), it is beneficial to know what your PTM looks like,
especially the location of the parameters.

¢ Before applying opendelta, you can know how to specify your modifications in terms of key addressing.

¢ After the modification is done, you can know if your modification is what you expected, for example, whether
the position of the delta modules are desired, or whether you froze the correct parameters.

Now let’s begin to try the visualization utility.

1.12.1 Visualization is NOT easy using pytorch native function.

from transformers import BertForMaskedLM
backbone_model = BertForMaskedLM.from_pretrained("bert-base-uncased")
print (backbone_model)

BertForMaskedLM(
(bert): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30522, 768, padding_idx=@)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=2.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)

)

(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)

The original presentation of models is not tailored for repeated structures, big models, or parameters-centric
tasks.

1.12. Visualize the Parameters 19

OpenDelta, Release 0.3.2

1.12.2 Using visualization from bigmodelvis.

First let’s visualize all the parameters in the bert model. As we can see, structure inside a bert model, and the all the
paramters location of the model are neatly represented in tree structure. (See color scheme for the colors)

from bigmodelvis import Visualization
model_vis = Visualization(backbone_model)
model_vis.structure_graph()

root
— bert
— embeddings
— word_embeddings weight:[3
— position_embeddings
— token_type_embeddings
— LayerNorm weight: [’
— encoder
— layer
— attention
— self

— output
— dense
— LayerNorm
— intermediate
— dense

— output
— dense
— LayerNorm
— cls
— predictions
— transform
— dense weight:[
— LayerNorm
— decoder weight: [3¢

Suggestion

We can reference a module according to the graph easily:

print (backbone_model.bert.encoder.layer[0].intermdiate)

When using opendelta on a new backbone model, it’s better to first visualize the child module names (shown in white),
and then designating the modified_modules.

20 Chapter 1. Essential Advantages:

OpenDelta, Release 0.3.2

1.12.3 Now add a delta model and visualize the change.

from opendelta import LowRankAdapterModel

delta_model = LowRankAdapterModel (backbone_model)

delta_model. freeze_module(exclude=["cls", "intermediate", "LayerNorm"])
Visualization(backbone_model) .structure_graph()

root
— bert
— embeddings
— word_embeddings
— position_embeddings
— token_type_embeddings
— LayerNorm
— encoder
— layer
— attention
— self

— output

— dense

— LayerNorm
— low_rank_adapter

— down_sampler
— up_sampler
— intermediate
— dense weight: [:
— output
— dense
— LayerNorm weight:[768] b
— low_rank_adapter
— down_sampler
— up_sampler
— cls
— predictions
— transform
— dense weight:
— LayerNorm
— decoder

Color Schema

PlatForm Sentivity

Depending on the platform the code is running on, the colors may vary slightly.

1.12.4 We also provide the option to visualize the nodes without parameters.

Visualization(backbone_model) .structure_graph(keep_non_params=True)

Thus, the modules like dropout and activations are kept.

Order of the submodule

Currently, OpenDelta‘s Visualization visualize the model based on pytorch’s named_modules method. That means the

1.12. Visualize the Parameters 21

OpenDelta, Release 0.3.

2

root
— bert
— embeddings

— word_embeddings
— position_embeddings
— token_type_embeddings

— LayerNorm

— dropout
— encoder

— layer

weight:[7

— attention

self

— dropout
output

— dense

— LayerNorm
— dropout

— low_rank_adapter

— activation
— down_sampler
“— up_sampler

— intermediate

— dense weight:

— output
— dense
— LayerNorm
— dropout
— low_rank_adapter
— activation
— down_sampler

e
— predictions
— transform
— dense
— LayerNorm
— decoder

— up_sampler

weight: [’

W

weight:[768] bias:

72, 768] biz

weight:[768] bi

22

Chapter 1.

Essential Advantages:

OpenDelta, Release 0.3.2

order of the presented submodule is the order they are add to the parent module, not necessarily the order that tensors
flows through.

1.13 Inspect the optimizer

1.14 Philosophy and Key Features

Plug-and-play Design.

Existing open-source project to propogate this ¢’delta-tuning” paradigm includes AdapterHub, which copies the trans-
formers code base and modify on it, which makes it unintuitive to transfer from a normal code base to a delta-tuning
ones.

OpenDelta approaches this problem via a true plug-and-play fashion to the PLMs. To migrate from a full-model
finetuning training scripts to a delta tuning training scripts, you DO NOT need to change the backbone bone model
code base to an adapted code base.

Here is how we achieve it.

é:, Read through it will also help you to implement your own delta models in a sustainable way.

1.14.1 1. Name-based submodule addressing.

See name based addressing

1.14.2 2. Three basic submodule-level delta operations.

We use three key functions to achieve the modifications to the backbone model outside the backbone model’s code.
1. unfreeze some paramters

Some delta models will unfreeze a part of the model parameters and freeze other parts of the model, e.g. BitFit.
For these methods, just use freeze_module method and pass the delta parts into exclude.

2. replace an module

Some delta models will replace a part of the model with a delta model, i.e., the hidden states will no longer go
through the original submodules. This includes Lora. For these methods, we have an update_module interface.

3. insertion to the backbone
¢ sequential insertion

Most adapter model insert a new adapter layer after/before the original transformers blocks. For these
methods, insert the adapter’s forward function after/before the original layer’s forward function using in-
sert_sequential_module interface.

* parallel insertion

Adapters can also be used in a parallel fashion (see Paper). For these me